4.2 Article

Nuclear spin quantum memory in silicon carbide

期刊

PHYSICAL REVIEW RESEARCH
卷 4, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.4.033107

关键词

-

资金

  1. European Union [862721]

向作者/读者索取更多资源

Transition metal defects in silicon carbide show promise as a platform for quantum technology applications. Researchers have developed a driven, dissipative protocol to polarize nuclear spins, enabling the use of established methods for initializing and storing quantum states. This study represents the first step towards an all-optically controlled integrated platform for quantum technology with transition metal defects in SiC.
Transition metal (TM) defects in silicon carbide (SiC) are a promising platform for applications in quantum technology. Some TM defects, e.g., vanadium, emit in one of the telecom bands, but the large ground-state hyperfine manifold poses a problem for applications which require pure quantum states. We develop a driven, dissipative protocol to polarize the nuclear spin, based on a rigorous theoretical model of the defect. We further show that nuclear-spin polarization enables the use of well-known methods for initialization and long time coherent storage of quantum states. The proposed nuclear-spin preparation protocol thus marks the first step towards an all-optically controlled integrated platform for quantum technology with TM defects in SiC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据