4.6 Article

RANKL neutralisation prevents osteoclast activation in a human in vitro ameloblastoma-bone model

期刊

JOURNAL OF TISSUE ENGINEERING
卷 13, 期 -, 页码 -

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/20417314221140500

关键词

Odontogenic; neoplasm; RANK ligand; osteoblasts; osteoclastogenesis

资金

  1. BISS Charitable Foundation
  2. Maritza and Reino Salonen Foundation

向作者/读者索取更多资源

This study aimed to create a fully humanized 3D disease model containing ameloblastoma cells, osteoblasts, and activated osteoclasts in order to investigate the RANKL pathway within the ameloblastoma stromal environment and its response to the RANKL antibody denosumab.
Ameloblastoma is a benign, locally invasive epithelial odontogenic neoplasm of the jaw. Treatment of choice is jaw resection, often resulting in significant morbidity. The aim of this study was to recapitulate ameloblastoma in a completely humanised 3D disease model containing ameloblastoma cells, osteoblasts and activated osteoclasts to investigate the RANKL pathway within the ameloblastoma stromal environment and its response to the RANKL antibody denosumab. In vitro bone was engineered by culturing human osteoblasts (hOB) in a biomimetic, dense collagen type I matrix, resulting in extensive mineral deposits by day 21 forming alizarin red positive bone like nodules throughout the 3D model. Activated TRAP + human osteoclasts were confirmed through the differentiation of human CD14+ monocytes after 10 days within the model. Lastly, the ameloblastoma cell lines AM-1 and AM-3 were incorporated into the 3D model. RANKL release was validated through TACE/ADAM17 activation chemically or through hOB co-culture. Denosumab treatment resulted in decreased osteoclast activation in the presence of hOB and ameloblastoma cells. These findings stress the importance of accurately modelling tumour and stromal populations as a preclinical testing platform.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据