4.8 Article

Design principles for hydrogen evolution reaction catalyst materials

期刊

NANO ENERGY
卷 29, 期 -, 页码 29-36

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nanoen.2016.04.017

关键词

Hydrogen evolution reaction; Electrocatalysis; pH effect; Surface science; Structure-function relationships

资金

  1. Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences, U.S. Department of Energy [DE-AC02-06CH11357]

向作者/读者索取更多资源

Design and synthesis of active, stable and cost-effective materials for efficient hydrogen production (hydrogen evolution reaction, HER) is of paramount importance for the successful deployment of hydrogen -based alternative energy technologies. The HER, seemingly one of the simplest electrochemical reactions, has served for decades to bridge the gap between fundamental electrocatalysis and practical catalyst design. However, there are still many open questions that need to be answered before it would be possible to claim that design principles of catalyst materials are fully developed for the efficient hydrogen production. In this review, by summarizing key results for the HER on well-characterized electrochemical interfaces in acidic and alkaline media, we have broadened our understanding of the HER in the whole range of pH by considering three main parameters: the nature of the proton donor (H3O+ in acid and H2O in alkaline), the energy of adsorption of H-ad and OHad, and the presence of spectator species. Simply by considering these three parameters we show that great deal has already been learned and new trends are beginning to emerge, giving some predictive ability with respect to the nature of electrochemical interface and electrocatalytic activity of the HER. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据