4.8 Article

High dispersion of 1-nm SnO2 particles between graphene nanosheets constructed using supercritical CO2 fluid for sodium-ion battery anodes

期刊

NANO ENERGY
卷 28, 期 -, 页码 124-134

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nanoen.2016.08.044

关键词

Tin oxide; Nanocomposites; Supercritical fluid; Anodes; Sodium-ion batteries

资金

  1. Ministry of Science and Technology (MOST) of Taiwan

向作者/读者索取更多资源

Supercritical CO2 (SCCO2) fluid, which has gas-like diffusivity, extremely low viscosity, and near-zero surface tension, is used to synthesize SnO2 nanoparticles (a 1-nm diameter is achievable), which are uniformly dispersed and tightly anchored on graphene nanosheets (GNSs) and carbon nanotubes (CNTs). The discharge capacity, rate capability, and cyclic stability of the synthesized SnO2/GNS and SnO2/CNT nanocomposites are compared. This study also tunes the SCCO2 temperature (and thus its fluid density) and finds that this factor crucially affects the SnO2 size and distribution, determining the resulting electrochemical properties. The sodiation/desodiation mechanism of the SnO2/GNS electrode is examined using synchrotron ex situ X-ray absorption and X-ray diffraction techniques, together with transmission electron microscopy. We confirm that while the oxide conversion reaction is reversible, the sluggish Sn-Na alloying/dealloying reaction is responsible for the lower measured capacity as compared to the theoretical value. The first-cycle efficiency loss is mainly attributed to the trapping of Na in the electrode surface solid electrolyte interphase layer. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据