4.8 Article

Biomimetic design of monolithic fuel cell electrodes with hierarchical structures

期刊

NANO ENERGY
卷 20, 期 -, 页码 57-67

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2015.11.033

关键词

Electrospinning; Nanowires; Nanoporous; Fuel cells; Membrane electrode assembly; Formic acid

资金

  1. University of Waterloo
  2. Waterloo Institute for Nanotechnology
  3. Automotive Partnership Canada (APC) through the Natural Sciences and Engineering Research Council of Canada (NSERC) [APCPJ 417858-11]

向作者/读者索取更多资源

Despite the significant improvement of polymer electrolyte membrane fuel cell catalyst activities, a cost-effective and stable membrane electrode assembly is still lacking, which greatly inhibits the commercialization of this efficient and environmental friendly technology in stationary and transportation applications. The main reason is that the engineering of different components of an electrode, such as catalytically active metals, electron transport and reactant diffusion paths in a compatible way is very challenging. Here we show the design and preparation of a monolithic fuel cell electrode with a compatible wire on wire structure that mimics the configuration of a pine tree. We developed a procedure to make a flexible carbon thin film composed of porous nanofibers with a thickness of similar to 100 nm and centimeter scale lengths. Platinum nanowires (ca. 3 nm diameter) were deposited on these microscale carbon nanofiber films, resulting in a hierarchical structure. The platinum nanowires were then decorated with a porous bismuth coating to modulate the atomic structure and induce catalytic activity toward formic acid electrooxidation. The end result is a monolithic structure used as a fuel cell electrode that combines microscale diffusive pathways and nanoscale catalyst structures. Prepared by a process that is readily scalable, this design strategy offers a new way to tailor catalytic functions at a system level. (C) 2016 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据