4.7 Article

Mapping cell cortex rheology to tissue rheology and vice versa

期刊

PHYSICAL REVIEW E
卷 106, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.106.034403

关键词

-

向作者/读者索取更多资源

This study establishes a mapping that relates cortical rheology to tissue rheology, revealing the proportional relationship between tissue low-frequency elastic modulus and the rest tension of the cortex. It predicts the mapping between fractional viscocontractile cortex rheology and high-frequency fractional visco-elastic monolayer rheology, and also identifies the unsuitability of 2D hexagonal tiling models for realistic monolayer rheologies.
The mechanics of biological tissues mainly proceeds from the cell cortex rheology. A direct, explicit link between cortex rheology and tissue rheology remains lacking, yet would be instrumental in understanding how modulations of cortical mechanics may impact tissue mechanical behavior. Using an ordered geometry built on 3D hexagonal, incompressible cells, we build a mapping relating the cortical rheology to the monolayer tissue rheology. Our approach shows that the tissue low-frequency elastic modulus is proportional to the rest tension of the cortex, as expected from the physics of liquid foams as well as of tensegrity structures. A fractional viscocontractile cortex rheology is predicted to yield a high-frequency fractional visco-elastic monolayer rheology, where such a fractional behavior has been recently observed experimentally at each scale separately. In particular cases, the mapping may be inverted, allowing to derive from a given tissue rheology the underlying cortex rheology. Interestingly, applying the same approach to a 2D hexagonal tiling fails, which suggests that the 2D character of planar cell cortex-based models may be unsuitable to account for realistic monolayer rheologies. We provide quantitative predictions, amenable to experimental tests through standard perturbation assays of cortex constituents, and hope to foster new, challenging mechanical experiments on cell monolayers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据