4.6 Article

Beyond one-axis twisting: Simultaneous spin-momentum squeezing

期刊

PHYSICAL REVIEW A
卷 106, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.106.043711

关键词

-

资金

  1. NSF [PHY 1734006, OMA 2016244, PHY 2207963]
  2. University of Pisa, Italy
  3. MIT-UNIPI program

向作者/读者索取更多资源

The creation and manipulation of quantum entanglement is crucial for improving precision measurements. This study introduces a method that goes beyond one-axis twisting to generate squeezing and entanglement across two distinct degrees of freedom. By using a nonlinear Hamiltonian to generate dynamics in SU(4), more rich context of quantum entanglement is achieved.
The creation and manipulation of quantum entanglement is central to improving precision measurements. A principal method of generating entanglement for use in atom interferometry is the process of spin squeezing whereupon the states become more sensitive to SU(2) rotations. One possibility to generate this entanglement is provided by one-axis twisting (OAT), where a many-particle entangled state of one degree of freedom is generated by a nonlinear Hamiltonian. We introduce a method which goes beyond OAT to create squeezing and entanglement across two distinct degrees of freedom. We present our work in the specific physical context of a system consisting of collective atomic energy levels and discrete collective momentum states, but also consider other possible realizations. Our system uses a nonlinear Hamiltonian to generate dynamics in SU(4), thereby creating the opportunity for dynamics not possible in typical SU(2) one-axis twisting. This leads to three axes undergoing twisting due to the two degrees of freedom and their entanglement, with the resulting potential for a more rich context of quantum entanglement. The states prepared in this system are potentially more versatile for use in multiparameter or auxiliary measurement schemes than those prepared by standard spin squeezing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据