3.8 Proceedings Paper

Absolute Position Detection in 7-Phase Sensorless Electric Stepper Motor

向作者/读者索取更多资源

Absolute position detection in sensorless electric stepper motors offers advantages such as higher space efficiency, improved shock resistance, simplified installation, reduced cost, etc. The technology enables dynamic position sensing and correction, but it is not applicable at standstill. Calibration and smoothing techniques are used to minimize measurement errors.
Absolute position detection in sensorless electric stepper motors potentially allows for higher space efficiency, improved shock resistance, simplified installation, reduced number of parts and lowered cost. A prototype is demonstrated measuring 42 x 42 x 34mm(3) with seven coils arranged in a star configuration. The rotor is (sic)25.8 x 12.5mm(2) and has 51 teeth which are irregularly spaced. At the driver side, the coil currents are measured during motion in order to reconstruct the absolute position of the motor. Calibration and smoothing techniques are used to reduce systematic and stochastic measurement errors, respectively. The motor is able to detect and correct its position after externally-induced stalls at the tested motor speeds from 40 rpm to 108 rpm. The holding torque is 0.23Nm at an armature current of 1 A; on average the torque is 7% lower than that of a reference bipolar stepper motor with the same dimensions. The results show that dynamic position sensing and correction are possible for a range of velocities, but not at standstill. The driver requires seven current sensors and sufficient computational power, and proper calibration of motor intrinsics is required beforehand. The presented technology could make existing 3-D printers and other machines with open-loop stepper motors more robust and increase the range of operating speeds and accelerations, without the adverse side-effects of increased complexity and cost associated with dedicated position sensors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据