4.5 Article

The osteogenetic activities of mesenchymal stem cells in response to Mg2+ ions and inflammatory cytokines: A numerical approach using fuzzy logic controllers

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 18, 期 9, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1010482

关键词

-

资金

  1. Helmholtz Zentrum Hereon

向作者/读者索取更多资源

In this study, a numerical model was proposed to investigate the regulatory importance of magnesium ions (Mg2+) on the osteoblastic differentiation of mesenchymal stem cells (MSCs) in the presence of an inflammatory response. The model successfully reproduced empirical data regarding the concentration- and phase-dependent effect of Mg2+ ions on the differentiation process. It also highlighted the differences in the behavioral properties of cells cultured in different experiments and the nonlinearities in the concentration-dependent role of inflammatory cytokines in differentiation rates.
Magnesium (Mg2+) ions are frequently reported to regulate osteogenic activities of mesenchymal stem cells (MSCs). In this study, we propose a numerical model to study the regulatory importance of Mg2+ ions on MSCs osteoblastic differentiation in the presence of an inflammatory response. A fuzzy logic controller was formulated to receive the concentrations of Mg2+ ions and the inflammatory cytokines of TNF-alpha, IL-10, IL-1 beta, and IL-8 as cellular inputs and predict the cells' early and late differentiation rates. Five sets of empirical data obtained from published cell culture experiments were used to calibrate the model. The model successfully reproduced the empirical data regarding the concentration- and phase-dependent effect of Mg2+ ions on the differentiation process. In agreement with the experiments, the model showed the stimulatory role of Mg2+ ions on the early differentiation phase, once administered at low concentration, and their inhibitory role on the late differentiation phase. The numerical approach used in this study suggested 6-8 mM as the most effective concentration of Mg2+ ions in promoting the early differentiation process. Also, the proposed model sheds light on the fundamental differences in the behavioral properties of cells cultured in different experiments, e.g. differentiation rate and the sensitivity of the cultured cells to stimulatory signals such as Mg2+ ions. Thus, it can be used to interpret and compare different empirical findings. Moreover, the model successfully reproduced the nonlinearities in the concentration-dependent role of the inflammatory cytokines in early and late differentiation rates. Overall, the proposed model can be employed in studying the osteogenic properties of Mg-based implants in the presence of an inflammatory response. Author summaryMagnesium (Mg) is an attractive material for bone implants as it fully degrades after implantation, saving pain and cost of the second surgery for implant removal. To advance its application in the orthopedic industry, it is paramount to fully understand the biological impact of the degradation products, in particular Mg2+ ions. Here, we propose a computer model to study the effects of Mg2+ ions on bone regeneration. The model focuses on stem cells and includes both the direct stimulation effects of Mg2+ ions on cells and the indirect stimulus through the inflammatory system. The proposed model successfully reproduced the experimental data of five different studies. The model additionally highlighted differences amongst different experiments in terms of the cellular response to Mg2+ ions. The proposed system therefore provides an important addition to the field of Mg implant research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据