4.8 Review

S-scheme heterojunction photocatalysts for CO2 reduction

期刊

MATTER
卷 5, 期 12, 页码 4187-4211

出版社

CELL PRESS
DOI: 10.1016/j.matt.2022.09.009

关键词

-

资金

  1. National Natural Science Foundation of China [51961135303, 51932007, U1905215, 21871217, 52073223]
  2. China Post-doctoral Science Foundation [2021TQ0310]

向作者/读者索取更多资源

S-scheme heterojunctions are widely used in photocatalytic CO2 reduction to separate photogenerated carriers and maximize the redox powers of photocatalysts. Various popular photocatalysts, such as metal oxides, metal chalcogenides, graphitic carbon nitrides, and bismuth oxyhalides, have been used to construct S-scheme heterojunctions and improve CO2 reduction performance.
Step-scheme (S-scheme) heterojunctions have been widely applied in photocatalytic CO2 reduction because they facilitate the spatial separation of photogenerated carriers and maximize the redox powers of photocatalysts. The S-scheme heterojunction promotes the recombination of useless photogenerated charge carriers and preserves the useful ones for photocatalytic redox reactions. Various popular photocatalysts, such as metal oxides, metal chalcogenides, graphitic carbon nitrides, and bismuth oxyhalides, have been used to construct S-scheme heterojunctions and displayed improved CO2-reduction performance. To summarize the recent advances in this burgeoning field, this review discusses popular photocatalyticmaterials to constitute S-scheme heterojunctions for CO2 reduction. In the review, the fundamentals of S-scheme photocatalytic mechanisms are introduced. Then, the influence of S-scheme heterojunctions and selected photocatalysts on promoting photocatalytic CO2 reduction are highlighted. Lastly, challenges and prospects are discussed to motivate future studies on developing novel, high-performance S-scheme photocatalysts and studying the corresponding photocatalytic mechanisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据