4.6 Article

A pan-cancer analysis of matrisome proteins reveals CTHRC1 and a related network as major ECM regulators across cancers

期刊

PLOS ONE
卷 17, 期 10, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0270063

关键词

-

资金

  1. Indian Council of Medical Research [35/03/2019-NANO/BMS]
  2. Department of Science and Technology, Ministry of Science and Technology [SR/WOS-A/LS-158/2017]

向作者/读者索取更多资源

The extracellular matrix in the tumour microenvironment plays a regulatory role in cancer cell growth and progression. Through gene analysis, CTHRC1 was identified as a key regulator of collagen synthesis that is significantly altered in multiple cancers and affects cancer survival. This finding highlights the importance of studying the interaction between CTHRC1 and other matrisome genes in cancer treatment.
The extracellular matrix in the tumour microenvironment can regulate cancer cell growth and progression. A pan-cancer analysis of TCGA data from 30 cancer types, identified the top 5% of matrisome genes with amplifications or deletions in their copy number, that affect their expression and cancer survival. A similar analysis of matrisome genes in individual cancers identified CTHRC1 to be significantly altered. CTHRC1, a regulator of collagen synthesis, was identified as the most prominently upregulated matrisome gene of interest across cancers. Differential gene expression analysis identified 19 genes whose expression is increased with CTHRC1. STRING analysis of these genes classified them as 'extracellular', involved most prominently in ECM organization and cell adhesion. KEGG analysis showed their involvement in ECM-receptor and growth factor signalling. Cytohubba analysis of these genes revealed 13 hub genes, of which MMP13, POSTN, SFRP4, ADAMTS16 and FNDC1 were significantly altered in their expression with CTHRC1 and seen to affect survival across cancers. This could in part be mediated by their overlapping roles in regulating ECM (collagen or fibronectin) expression and organisation. In breast cancer tumour samples CTHRC1 protein levels are significantly upregulated with POSTN and MMP13, further supporting the need to evaluate their crosstalk in cancers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据