4.6 Article

Novel pyrene containing monomeric and dimeric supramolecular AIEE active nano-probes utilized in selective off-on trivalent metal and highly acidic pH sensing with live cell applications

期刊

JOURNAL OF MATERIALS CHEMISTRY C
卷 4, 期 10, 页码 2056-2071

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5tc03738g

关键词

-

资金

  1. Ministry of Science and Technology of Taiwan [MOST 103-2811-M-009-070, MOST 102-2112-M-009-011-MY3]

向作者/读者索取更多资源

Two novel pyrene containing monomeric and dimeric Schiff base derivatives PCS1 and PCS2 have been synthesized via one-pot reaction and their nano-J-type aggregation induced emission enhancement (AIEE) was well demonstrated using UV-Vis/PL, transmission electron microscopy (TEM), dynamic light scattering (DLS), time resolved photoluminescence (TRPL), and live cell imaging studies. In contrast to PCS2, PCS1 in CH3CN exhibits fluorescence off-on sensor selectivity towards transition trivalent metal ions (Fe3+, Cr3+ and Al3+) among other metals, via PET inhibition with excimer PCS1-PCS1(star) formation. The 2 : 1 stoichiometry of PCS1 center dot center dot center dot M3+ (M = Fe/Cr/Al) sensor complexes was calculated from Job's plots based on their PL titrations. In addition, the binding sites of PCS1 center dot center dot center dot M3+ sensor complexes were well recognised from the H-1 NMR titrations and supported by ESI(+ve) mass and FTIR analysis. Additionally, fluorescence reversibilities of PCS1 center dot center dot center dot M3+ were observed via consequent addition of M3+ ions and PMDTA, respectively. Furthermore, the detection limits (LODs) and the association constant (K-a) values of PCS1 center dot center dot center dot M3+ complexes were calculated using standard deviation and linear fittings. Likewise, quantum yield (Phi) measurements, TEM analysis, determination of the effect of pH, density functional theory (DFT) and time resolved photoluminescence (TRPL) studies were performed for the PCS1 center dot center dot center dot M3+ sensor complexes. More importantly, confocal fluorescence microscopy imaging of Raw264.7 cells showed that PCS1 could be used as an effective fluorescent probe for detecting transition trivalent metal ions (Fe3+, Cr3+, and Al3+) in living cells. Impressively, both PCS1 and PCS2 showed off-on sensing at highly acidic pH values (1-3) with live cell applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据