4.6 Article

High mobility polycrystalline indium oxide thin-film transistors by means of plasma-enhanced atomic layer deposition

期刊

JOURNAL OF MATERIALS CHEMISTRY C
卷 4, 期 28, 页码 6873-6880

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6tc00580b

关键词

-

资金

  1. Development of Organometallics and Device Fabrication for IT ET Convergence [KK1502-H00]
  2. Korea Research Institute of Chemical Technology (KRICT)
  3. 'The cross-Ministry Giga KOREA project' grant from Ministry of Science, ICT and Future Planning, Korea [GK15D0100]

向作者/读者索取更多资源

Indium oxide thin films are deposited via plasma-enhanced atomic layer deposition (PEALD) to exploit their potential as a semiconductor in high mobility thin-film transistors (TFTs), which are suitable for fast driving applications such as high resolution displays. The films are successfully grown by the reaction between an Et2InN(SiMe3)(2) liquid precursor and oxygen plasma at temperatures ranging from 100 degrees C to 250 degrees C giving a saturated growth rate value of similar to 1.45 angstrom per cycle at the ALD window with precisely controlled thickness and uniformity. The plasma reaction enhances the film growth rate and changes the electrical properties of the films. Depending on the substrate temperatures, each film has a different chemical composition, thereby showing different electrical characteristics. Indium oxide films grown by PEALD show a lower carrier density of similar to 4 x 10(19) cm(-3) than those prepared by thermal ALD due to the reactive oxygen plasma source in the former. Offering the precise control of thickness and high quality of indium oxide grown by PEALD, and with a proper post thermal-annealing and passivation process, the possibility of exploiting the potential of semiconductor characteristics of indium oxide is verified from bottom-gate coplanar structured TFTs, which exhibit a high mobility as high as 39.2 cm(2) V-1 s(-1), a turn-on voltage value of -1.18 V, and a sub-threshold voltage of 0.27 V dec(-1) in a linear region. On the basis of this outstanding performance, the PEALD-InOx TFTs developed in this study would be suitable for diverse microelectronic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据