4.6 Article

Functionalized halloysite nanotube by chitosan grafting for drug delivery of curcumin to achieve enhanced anticancer efficacy

期刊

JOURNAL OF MATERIALS CHEMISTRY B
卷 4, 期 13, 页码 2253-2263

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5tb02725j

关键词

-

资金

  1. National High Technology Research and Development Program of China [2015AA020915, SS2014AA020538]
  2. National Natural Science Foundation of China [51473069, 51502113]
  3. Guangdong Natural Science Funds for Distinguished Young Scholar [S2013050014606, S2013050014667]
  4. Fundamental Research Funds for the Central Universities [21615204]

向作者/读者索取更多资源

Halloysite nanotubes (HNTs) have a unique tubular structure in nanoscale, and have shown potential as novel carriers for various drugs. Coating the nanotubes with a hydrophilic polymer shell can significantly decrease the toxicity and provide colloidal stability during blood circulation. Here, we synthesized chitosan grafted HNTs (HNTs-g-CS) and investigated their potential as a nano-formulation for the anticancer drug curcumin. The structure and properties of HNTs-g-CS were characterized using water contact angle, zeta-potential, Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM) techniques. HNTs-g-CS exhibit a maximum 90.8% entrapment efficiency and 3.4% loading capacity of curcumin, which are higher than those of raw HNTs. HNTs-g-CS also show no obvious hemolytic phenomenon and good stability in serum. The cumulative release ratio of curcumin from HNTs-g-CS/curcumin at cell lysate after 48 hours is 84.2%. The curcumin loaded HNTs-g-CS show specific toxicity to various cancer cell lines, including HepG2, MCF-7, SV-HUC-1, EJ, Caski and HeLa, and demonstrate an inhibition concentration of IC50 at 5.3-192 mu M as assessed by cytotoxicity studies. The anticancer activity of this nanoformulation is extremely high in EJ cells compared with the other cancer cell lines. The cell uptake of HNTs-g-CS is confirmed by fluorescence microscopy. Flow cytometric analysis of curcumin loaded HNTs-g-CS shows that curcumin loaded HNTs-g-CS increase apoptosis on EJ cells. The content of ROS created by HNTs-g-CS/curcumin is more than that of free curcumin. All these results suggest that HNTs-g-CS are potential nanovehicles for anticancer drug delivery in cancer therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据