4.6 Article

Selective sensing of isoprene by Ti-doped ZnO for breath diagnostics

期刊

JOURNAL OF MATERIALS CHEMISTRY B
卷 4, 期 32, 页码 5358-5366

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6tb01335j

关键词

-

资金

  1. Swiss National Science Foundation [200021_159763/1]

向作者/读者索取更多资源

Exhaled isoprene could enable non-invasive monitoring of cholesterol-lowering therapies. Here, we report an isoprene-selective sensor at high relative humidity (RH) for the first time (to our knowledge). It is made of nanostructured, chemo-resistive Ti-doped ZnO particles (10-20 nm crystal size) produced by flame spray pyrolysis (FSP) and directly deposited in one step onto compact sensor substrates forming highly porous films. The constituent particles consist of stable Ti-doped ZnO solid solutions for Ti levels up to 10 mol% apparently by substitutional incorporation of Ti4+ into the ZnO wurtzite lattice and dominant presence at the particle surface. These Ti4+ point defects strongly enhance the isoprene sensitivity (>15 times higher than pure ZnO) and turn ZnO isoprene-selective, while also improving its thermal stability. In situ infrared spectroscopy confirms that Ti4+ intensifies the surface interaction of Ti-doped ZnO with isoprene by providing additional sites for chemisorbed hydroxyl species. In fact, at an optimal Ti content of 2.5 mol%, this sensor shows superior isoprene responses compared to acetone, NH3 and ethanol at 90% RH. Most notably, breath-relevant isoprene concentrations can be detected accurately down to 5 ppb with high (>10) signal-to-noise ratio. As a result, an inexpensive isoprene detector has been developed that could be easily incorporated into a portable breath analyzer for noninvasive monitoring of metabolic disorders (e.g. cholesterol).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据