4.6 Article

Co-localization of catalysts within a protein cage leads to efficient photochemical NADH and/or hydrogen production

期刊

JOURNAL OF MATERIALS CHEMISTRY B
卷 4, 期 32, 页码 5375-5384

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6tb01175f

关键词

-

资金

  1. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE-FG02-07ER46477]

向作者/读者索取更多资源

Using the interior of the P22 virus-like particle (VLP) we have co-localized and constrained multiple copies of a photosensitizer (Eosin-Y) and a NADH/hydrogen catalyst (cobaloxime). These small molecules were conjugated to an amine bearing polymer framework synthesized within the confines of the P22 capsid by atom transfer radical polymerization (ATRP). Using aminoethyl methacrylate (AEMA) and bisacrylamide as the monomers we introduced a crosslinked polymer framework with addressable amines and conjugated each of the small molecules through an isothiocyanate moiety. With precise control over the average labeling stoichiometry, we conjugated the Eosin-Y and cobaloxime catalysts to the polymer such that they were co-localized on the interior of the P22 VLP. This co-localization facilitated the photochemical production of NADH from NAD+ under aqueous conditions with a maximum turnover of 11.40 x 10 (-3) s(-1). The reaction products could be switched from NADH to H-2 production by increasing the relative stoichiometry of the cobaloxime labeling. The co-confinement of this coupled catalytic system within the VLP P22 creates a nano-material whose turnover activity is independent of the bulk concentration. These constructs are an example of a biomimetic materials design and synthesis approach in which efficient photochemical production of both NADH and hydrogen can be controlled by co-localizing catalysts within a virus-like particle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据