4.6 Article

Layered 2D alkyldiammonium lead iodide perovskites: synthesis, characterization, and use in solar cells

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 4, 期 40, 页码 15638-15646

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ta05055g

关键词

-

资金

  1. Swedish Government through STandUP for ENERGY
  2. Swedish Energy Agency
  3. Swedish Research Council
  4. Knut & Alice Wallenberg Foundation
  5. Korea-Sweden Collaborative Research Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT and Future Planning [NRF-2014K1A3A1A47067328]

向作者/读者索取更多资源

The synthetic route and properties of three 2D hybrid organic/inorganic lead iodide perovskite materials are reported. The 2D perovskites were synthesized from the reaction between PbI2 and the di-cations of 1,4-diaminobutane, 1,6-diaminohexane, and 1,8-diaminooctane. The resulting products were [NH3(CH2)(4)NH3] PbI4 (BdAPbI(4)), [NH3(CH2)(6)NH3]PbI4 (HdAPbI(4)), and [NH3(CH2)(8)NH3]PbI4 (OdAPbI(4)). Structural characterization shows that two dimensional perovskite structures were formed with inorganic structural planes separated by organic layers. Absorption spectra show band gaps of 2.37 eV (BdAPbI(4)), 2.44 eV (HdAPbI(4)), and 2.55 eV (OdAPbI(4)). The 2D perovskite materials were investigated as light absorbing materials in solid state solar cells. The best performing material under moist, ambient conditions was BdAPbI4 (1.08% efficiency), which was comparable to methylammonium Pb(II) iodide (MAPbI(3)) solar cells (2.1% efficiency) manufactured and studied under analogous conditions. When compared to MAPbI(3), the 2D materials have larger band gaps and lower photoconductivity, while BdAPbI(4) based solar cells shows a comparable absorbed photon-to-current efficiency as compared to MAPbI(3) based ones.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据