4.6 Article

Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 4, 期 37, 页码 14276-14283

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ta05095f

关键词

-

资金

  1. U.S. Department of Energy (DOE) SunShot Initiative under the Next Generation Photovoltaics 3 program [DE-FOA-0000990]
  2. Ohio Research Scholar Program
  3. National High Technology Research and Development Program [2015AA050601]
  4. National Natural Science Foundation of China [61376013, 91433203, J1210061]
  5. U.S. Department of Energy [DE-AC36-08-GO28308]

向作者/读者索取更多资源

Both tin oxide (SnO2) and fullerenes have been reported as electron selective layers (ESLs) for producing efficient lead halide perovskite solar cells. Here, we report that SnO2 and fullerenes can work cooperatively to further boost the performance of perovskite solar cells. We find that fullerenes can be redissolved during perovskite deposition, allowing ultra-thin fullerenes to be retained at the interface and some dissolved fullerenes infiltrate into perovskite grain boundaries. The SnO2 layer blocks holes effectively; whereas, the fullerenes promote electron transfer and passivate both the SnO2/perovskite interface and perovskite grain boundaries. With careful device optimization, the best-performing planar perovskite solar cell using a fullerene passivated SnO2 ESL has achieved a steady-state efficiency of 17.75% and a power conversion efficiency of 19.12% with an open circuit voltage of 1.12 V, a short-circuit current density of 22.61 mA cm(-2), and a fill factor of 75.8% when measured under reverse voltage scanning. We find that the partial dissolving of fullerenes during perovskite deposition is the key for fabricating high-performance perovskite solar cells based on metal oxide/fullerene ESLs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据