4.6 Article

MaLISA - a cooperative method to release adsorbed gases from metal-organic frameworks

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 4, 期 48, 页码 18757-18762

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ta09826f

关键词

-

资金

  1. CSIRO OCE Postdoctoral Fellowship
  2. ARC [FT130100345]

向作者/读者索取更多资源

Metal organic frameworks (MOFs) have emerged as ideal adsorbents for carbon capture owing to their exceptionally high surface areas and chemical versatility. However, the significant energy penalty for the regeneration of MOF adsorbents is one of the biggest barriers to their widespread deployment. To overcome this challenge, there has been a recent surge of high quality research to adapt MOFs to be responsive to external stimuli including light and magnetic fields such that they might expel adsorbed molecules at low energy cost and high efficiency. To further minimize the energy cost required for the regeneration of MOF adsorbents, we present a robust dual stimuli-responsive MOF, magnetic PCN-250 (mPCN), which shows strong responses to both magnetic induction and UV light following two distinct working mechanisms, magnetic induced localised heat and light induced localised bending of the MOF organic linkers. Both responses are able to collaboratively trigger a record high gas desorption (up to 96.8% of CO2 desorption at 1 bar) from mPCN through a MaLISA process, confirming a potentially low-energy yet highly efficient strategy to regenerate MOF adsorbents on a large scale. This is the 1st exploration in the use of multiple stimuli to improve gas liberation from MOF adsorbents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据