4.0 Article

Effect of multi-walled carbon nanotubes on DC electrical conductivity and acetone vapour sensing properties of polypyrrole

期刊

CARBON TRENDS
卷 9, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.cartre.2022.100193

关键词

Polypyrrole; Multi-walled carbon nanotubes; Nanocomposite; Acetone vapour sensing; DC electrical conductivity

向作者/读者索取更多资源

Polypyrrole/multi-walled carbon nanotubes nanocomposite (PPy/MWCNTs) exhibited improved electrical conductivity and acetone sensing performance compared to polypyrrole (PPy).
Polypyrrole (PPy) and polypyrrole/multi-walled carbon nanotubes nanocomposite (PPy/MWCNTs) were synthesized and characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmittance electron microscopy (TEM) and thermogravimetric analysis (TGA). PPy and PPy/MWCNTs were converted into pellets which were used in conductivity and acetone sensing experiments. The initial electrical conductivity of PPy increased from 0.16 Scm(-1) to 2.27 Scm(-1) by loading of MWCNTs into PPy matrix. At the same time, PPy/MWCNTs showed excellent conductivity retention properties as compared to PPy under both the isothermal and cyclic ageing conditions. A comparative acetone vapour sensing studies were carried out on PPy and PPy/MWCNTs sensors at different acetone concentration, i.e., 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.04, 0.03, 0.02 and 0.01 vol%. The PPy/MWCNTs sensor offered much-improved acetone vapour sensing performance as compared to PPy in terms of sensing response, reversibility and long term stability. PPy/MWCNTs sensor exhibited 2.44, 2.82, 3.06, 3.28, 3.88, 5.0, 5.42, 6.02, 6.08 and 7.44 times greater% sensing response than PPy sensor at 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.04, 0.03, 0.02 and 0.01 vol% acetone concentration, respectively. (c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据