4.6 Article

Ab initio prediction of a silicene and graphene heterostructure as an anode material for Li- and Na-ion batteries

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 4, 期 42, 页码 16377-16382

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ta06976b

关键词

-

资金

  1. Research Grants Council of the Hong Kong Special Administrative Region, China [16213414]

向作者/读者索取更多资源

Silicene has been predicted to be an extraordinary anode material for lithium-ion batteries with a large capacity and low lithium migration energy barriers, but the free-standing form of silicene is unstable, virtually requiring a substrate support. In this work, we propose to use graphene as a substrate and a protective layer of silicene, forming a van der Waals heterostructure of silicene and graphene (Si/G) to serve as a prospective anode material for lithium/sodium-ion batteries. Ab initio calculations show that the Si/G heterostructure not only preserves the silicene's large lithium/sodium capacity (487 mA h g(-1)) and low lithium/sodium migration energy barriers (<0.4 eV for lithium and <0.3 eV for sodium), but also provides much larger lithium/sodium binding energies via a synergistic effect, which can effectively inhibit the formation of dendrites. Density of states results show that the Si/G heterostructure is metallic before and after lithium/sodium intercalation, ensuring a good electronic conductivity. In addition, the mechanical stiffness of the Si/G heterostructure is found to be larger than that of pristine silicene or graphene, which helps preserve the structural integrity and enhance the cycle performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据