4.6 Article

Highly efficient visible-light-driven CO2 reduction to formate by a new anthracene-based zirconium MOF via dual catalytic routes

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 4, 期 7, 页码 2657-2662

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ta00429f

关键词

-

资金

  1. National Natural Science Foundation of China [21473024, 21101023]
  2. Natural Science Foundation of Jilin Province [20140101228JC]

向作者/读者索取更多资源

A new microporous robust zirconium metal-organic framework (Zr-MOF), NNU-28, has been synthesized and employed as a visible-light photocatalyst for carbon dioxide (CO2) reduction to produce formate. NNU-28 is constructed by using a visible light responsive organic ligand derived from an anthracene group. Studies reveal that the as-prepared Zr-MOF shows desirable characteristics including excellent chemical and thermal stability, high CO2 uptake, broad-band visible light absorption and efficient photoinduced charge generation. Remarkably, NNU-28 is highly efficient for visible-light-driven CO2 reduction with a formate formation rate of 183.3 mu mol h(-1) mmol(MOF)(-1), which is among the highest performances of Zr-MOFs. Both photocatalytic experiments and electron paramagnetic resonance (EPR) studies reveal that both the inorganic building unit Zr-6 oxo cluster and the anthracene-based ligand contribute to the highly efficient photocatalysis of CO2 reduction. The dual photocatalytic routes are demonstrated here to be more efficient for visible-light-driven CO2 photoreduction than that typically relying on a ligand-to-metal charge transfer process, illustrating a new strategy to design and synthesize novel visible-light photocatalysts for CO2 reduction with high efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据