4.6 Article

Three-dimensional homo-nanostructured MnO2/nanographene membranes on a macroporous electrically conductive network for high performance supercapacitors

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 4, 期 29, 页码 11317-11329

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ta01823h

关键词

-

资金

  1. Shanghai Pujiang Program [14PJ1403600]
  2. Shanghai Fundamental Key Project [11JC1403700]
  3. National Natural Science Foundation of China [61176108]
  4. PCSIRT
  5. Research Innovation Foundation of ECNU [78210245]
  6. Huaian Applied Research [HAG2014034]
  7. City University of Hong Kong Applied Research Grant (ARG) [9667104]

向作者/读者索取更多资源

A three-step hydrothermal route was designed to fabricate three-dimensional (3D) homo-nanostructured MnO2 (MnO2-MnO2)/nanographene membranes on a macroporous and electrically conductive network (MECN). The preparation technology, structure and morphology, and electrochemical properties of samples are determined systematically. The nanographene/MECN electrode with more defects as the active surface had been synthesized by hydrothermal carbonization. The in situ growth of delta-MnO2 with a carbon-assisted reaction on the nanographene/MECN was strongly adhered to the substrate. The additional alpha-MnO2 with a redox reaction enhanced the mass loading of MnO2, developing the specific capacitance of the MnO2-MnO2/nanographene/MECN electrode. The materials are demonstrated as an electrode with a maximum capacitance of 4.5 F cm(-2) or 179 F cm(-3) (894 F g(-1)) at 1 mA cm(-2) for 1 cm(2) samples and retaining over 83% after 20 000 cycles in 1 M Na2SO4. The MnO2-MnO2/nanographene/ MECN parallel to AC/Ni-foam supercapacitors with high volumetric energy densities exhibit the ideal performance of a supercapacitor (1 mW h cm(-3), 40.3 W h kg(-1), at 1000 W kg(-1)), indicating a promising future for supercapacitors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据