4.6 Article

Achieving high efficiency and improved stability in large-area ITO-free perovskite solar cells with thiol-functionalized self-assembled monolayers

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 4, 期 20, 页码 7903-7913

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ta02581a

关键词

-

资金

  1. Ministry of Science and Technology (MOST) [04-2221-E-035-035, 104-2119-M-009-012]

向作者/读者索取更多资源

We report a novel protocol for achieving highly efficient and stable indium-tin-oxide (ITO)-free large-area perovskite solar cells (PeSCs) by introducing thiol-functionalized self-assembled monolayers (SAMs) to modify the interfacial properties of the devices. Two SAM molecules, 3-mercaptopropyltrimethoxysilane (MPTMS) and (11-mercaptoundecyl) trimethylammonium bromide (MUTAB), are employed as the seed layer for an ultrathin Ag transparent electrode and cathode buffer layer (CBL), respectively. Our results indicate that both SAMs can afford admirable interfacial properties. The thiol groups on the MPTMS SAM can interact with the incident Ag atoms, thereby lowering the percolation thickness of the Ag film to 8 nm. The resulting ultrathin Ag film provides several remarkable features for use as the transparent electrode in PeSCs, including a low resistance of similar to 6 Omega sq(-1), high average transmittance up to similar to 78%, and high robustness against solvents and mechanical deformation. In addition to using the MPTMS SAM as the seed layer, the double-end functionalized MUTAB can not only covalently bond to the Ag surface for SAM formation, but also induce the formation of favorable interfacial dipoles to turn a high work-function (WF) Ag electrode into an efficient low-WF electrode. With these desired interfacial properties, the resulting devices deliver a power conversion efficiency (PCE) up to 16.2%. Notably, a high PCE up to similar to 16% can be secured for large-area devices (1.2 cm(2)) with a SAM-modified ultrathin Ag electrode, which represents the highest performance ever reported for PeSCs with similar active areas. More significantly, the resulting devices also possess good ambient stability without the need for rigorous encapsulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据