4.6 Article

Understanding and controlling water stability of MOF-74

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 4, 期 14, 页码 5176-5183

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ta10416e

关键词

-

资金

  1. Department of Energy [DE-FG02-08ER46491]
  2. Office of Science of Department of Energy [DE-AC05-00OR22725]

向作者/读者索取更多资源

Metal organic framework (MOF) materials in general, and MOF-74 in particular, have promising properties for many technologically important processes. However, their instability under humid conditions severely restricts practical use. We show that this instability and the accompanying reduction of the CO2 uptake capacity of MOF-74 under humid conditions originate in the water dissociation reaction H2O -> OH + H at the metal centers. After this dissociation, the OH groups coordinate to the metal centers, explaining the reduction in the MOF's CO2 uptake capacity. This reduction thus strongly depends on the catalytic activity of MOF-74 towards the water dissociation reaction. We further show that-while the water molecules themselves only have a negligible effect on the crystal structure of MOF-74-the OH and H products of the dissociation reaction significantly weaken the MOF framework and lead to the observed crystal structure breakdown. With this knowledge, we propose a way to suppress this particular reaction by modifying the MOF-74 structure to increase the water dissociation energy barrier and thus control the stability of the system under humid conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据