4.6 Article

The thermodynamics analysis and experimental validation for complicated systems in CO2 hydrogenation process

期刊

JOURNAL OF ENERGY CHEMISTRY
卷 25, 期 6, 页码 1027-1037

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jechem.2016.10.003

关键词

CO2 hydrogenation; Thermodynamics analysis; Gibbs free energy minimization method

资金

  1. National Research Foundation (NRF), Prime Minister's Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) Program

向作者/读者索取更多资源

Catalytic conversion of CO2 into chemicals and fuels is an alternative to alleviate climate change and ocean acidification. The catalytic reduction of CO2 by H-2 can lead to the formation of various products: carbon monoxide, carboxylic acids, aldehydes, alcohols and hydrocarbons. In this paper, a comprehensive thermodynamics analysis of CO2 hydrogenation is conducted using the Gibbs free energy minimization method. The results show that CO2 reduction to CO needs a high temperature and H-2/CO2 ratio to achieve a high CO2 conversion. However, synthesis of methanol from CO2 needs a relatively high pressure and low temperature to minimize the reverse water-gas shift reaction. Direct CO2 hydrogenation to formic acid or formaldehyde is thermodynamically limited. On the contrary, production of CH4 from CO2 hydrogenation is the thermodynamically easiest reaction with nearly 100% CH4 yield at moderate conditions. In addition, complex reactions with more than one product are also calculated in this work. Among the considered carboxylic acids (HCOOH, CH3COOH and C2H5COOH), propionic acid dominates in the product stream (selectivity above 90%). The same trend can also be found in the hydrogenation of CO2 to aldehydes and alcohols with the major product of propionaldehyde and butanol, respectively. In the process of CO2 hydrogenation to alkenes, low temperature, high pressure, and high H-2 partial pressure favor the CO2 conversion. C4H6 is the most thermodynamically favorable among all considered alkynes under different temperatures and pressures. The thermodynamic calculations are validated with experimental results, suggesting that the Gibbs free energy minimization method is effective for thermodynamically understanding the reaction network involved in the CO2 hydrogenation process, which is helpful for the development of high-performance catalysts. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据