4.7 Review

Do microbial decomposers find micro- and nanoplastics to be harmful stressors in the aquatic environment? A systematic review of in vitro toxicological research

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 903, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.166561

关键词

Toxicity; Oxidative stress; Bacteria; Polystyrene; Additive; Co-exposure

向作者/读者索取更多资源

Microbial decomposers' interactions with micro-and nanoplastics (MNPs) and the underlying toxicity mechanisms have not been comprehensively reviewed. This systematic review critically assesses in vitro evaluation methods and recent advances in understanding MNPs' toxicity mechanisms, providing crucial insights and up-to-date knowledge.
Microbial decomposers (bacteria and fungi) are likely to interact with plastic particles introduced into natural systems, particularly micro-and nanoplastics (MNPs), exposing them to a variety of risks. In vitro testing has proven to be an accessible and viable method for gaining insights into how microbial decomposers behave individually and systemically toward MNPs. Recent advances have enhanced our understanding of MNP interactions with organisms, revealing the molecular foundations of adaptive responses as well as the biological impact and potential risks to MNPs. Despite widespread attention, this topic has not yet been reviewed. Here, we conducted a systematic review of the available research to critically assess and highlight the most recent advances in two major areas: (1) methods for in vitro evaluation of environmentally relevant microbial decomposers to MNPs; and (2) current understanding of the underlying toxicity mechanisms gained from in vitro assessments. We also addressed the key considerations throughout and proposed available opportunities in the field. Our analysis revealed that MNPs' toxicity has been studied in vitro either alone or in combination with other contaminants (e.g., antibiotics and metallic nanoparticles), with Escherichia coli and polystyrene particles receiving the most attention. Moreover, there were methodological differences in terms of MNP size, shape, polymer, surface characteristics, exposure period, and concentrations. A combination of methods, including growth viability tests, biochemical assays, and omics profiling (metabolomics and transcriptomics), were employed to detect the effects of MNP exposure and explain its toxicity mechanism. The current literature suggests that the impacts of MNPs on microbial decomposers include alterations in the antioxidative system, gene expression levels and cell-membrane permeability and oxidative damage, all of which can be further influenced by MNPs interaction with other contaminants. This review will thus provide critical insights and up-to-date knowledge to assist novices and experts in promoting advancements and research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据