4.7 Article

Effects of different biofuels and their mixtures with diesel fuel on diesel engine performance and exhausts

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 903, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.166501

关键词

Combustion; Diesel engine; Energy analysis; Exergy analysis; Jatropha curcas; Pongamia Pinnata; Waste cooking oil biofuel

向作者/读者索取更多资源

This study investigated the energy, performance, and exhaust emissions of a compression ignition engine running on a blend of recycled used cooking oil, Jatropha curcas, and Pongamia Pinnata with petroleum diesel fuel. The experimental results showed lower thermal efficiency but reduced exhaust gas temperature and emissions compared to pure diesel fuel.
In this study, a compression ignition engine that ran on recycled used cooking oil (RUCO), Jatropha curcas (JC), Pongamia Pinnata (PP), and petroleum diesel fuel (PDF) was investigated for its energy, performance, and exhaust emissions. The 20 % by volume RUCO, JC, and PP biofuel mix with PDF is taken. According to the American Society for Testing and Material (ASTM) standard, the blend qualities are evaluated. Viscosity, density, flash point, and heating value have all been tested for the 20 % blend. The outcome indicated that for a 20 % mix, the viscosity, density and flash point were all greater than in the PDF but heat value lower. Because studies have demonstrated that diesel engines can operate on 20 % replacement without any modifications, this study focused on 20 % blend. The engine was tested with loads (Ls) ranging from 0 % to 100 % of its entire capacity while the compression ratios (CRs) was varied. The experimental result demonstrated that the thermal efficiency, as measured by the PDF, was much greater than that of the DRUCO20, DJC20, and DPP20 blends. After the addition of RUCO, JC, and PP to PDF, the temperature of the exhaust gases reduced, and the engine used more gasoline as a result. It was discovered that an engine emissions of hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) were lower than those of PDF. Even though it produced a greater amount of carbon dioxide (CO2) emissions, the DRUCO20 was superior to both the DCJ20 and the DPP20.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据