4.7 Article

Pompom 3D flower like carbon-based Mn3O4 thin film electrodes for high performance supercapacitors

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 968, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2023.171797

关键词

Electron beam evaporation; Supercapacitors; Thin films; Reduced graphene oxide (RGO)

向作者/读者索取更多资源

This study demonstrates the fabrication of 3D flower-shaped C/Mn3O4 thin film electrodes on ATS substrates using electron beam evaporation technique. The fabricated electrodes exhibit excellent performance in supercapacitors, including high cycling stability and reversible capacity.
Manganese oxides have received a lot of attention as positive electrode materials for supercapacitors, but they still present challenges due to their weak electrical conductivity, lack of electroactive sites, and slow charge transfer kinetics. Herein, utilizing the electron beam evaporation technique, we effectively create pompom 3D flower-like C/Mn3O4 particles on Au/Ti/SiO2/(textured) Silicon (ATS) substrates with a few nanometers thickness. High accessibility to active species is provided by the linked carbon with Mn3O4 and the flower-shaped particles with multiple petals, which further enhance charge transfer kinetics. As a result, C/Mn3O4 thin film electrodes showed outstanding cycling stability of 89% even after 10,000 cycles and a reversible capacity of 1452 Fg  1 at 1 mVs  1 scan rate. The C/Mn3O4 thin film-based electrodes improved electrochemical performance is attributable to their unique surface topology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据