4.7 Article

Highlights on the key roles of interfaces between CeO2-based oxide and perovskite (LaMnO3/LaFeO3) in creating active oxygen species for soot oxidation

期刊

FUEL
卷 356, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2023.129444

关键词

CeO 2-based oxide; Perovskite oxide; Interface interactions; Active lattice oxygen; Oxygen vacancies; Soot oxidation

向作者/读者索取更多资源

Efficient catalysts for reducing soot emissions under low oxygen concentration conditions have been designed by synthesizing hybrid catalysts combining CeO2-based oxide with perovskite. These catalysts have more oxygen vacancies and enhanced lattice oxygen transport, and the interfacial interaction significantly promotes the soot oxidation.
Design efficient catalyst which can activate oxygen molecules or supply active oxygen species is a key challenge for soot abatement under the much lower concentration of oxygen from gasoline vehicle exhaust. Herein, combining with the advantages of both CeO2-based oxide (CeO2-ZrO2-Y2O3-La2O3, CZ for short) and perovskite (LaMnO3 and LaFeO3) in oxygen storage/release, two hybrids catalysts, CZ-LaMnO3 (LM) and CZ-LaFeO3 (LF), with more oxygen vacancies and enhanced lattice oxygen transport at lower temperatures due to the heterointerface effects have been successfully synthesized for soot oxidation. Combining with X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), oxygen temperature-programmed desorption (O2-TPD) and H2 temperature-programmed reduction (H2-TPR), it was found that electrons transfer from Ce3+ to Fe3+ and an interfacial La diffusion from LM to CZ may have been occurred in LF-CZ and LM-CZ, respectively, which leads to the increased unsaturated sites and oxygen vacancies. More importantly, the obvious enhancement of active surface lattice oxygen transport at low temperatures due to interfacial interaction has also been demonstrated in LM-CZ, which highly promotes the soot oxidation. And consequently, 5LM-CZ (with 5 wt% content of LM) showed the highest soot conversion activity, whose T50 (50 % soot conversion temperature) (379 degrees C) was lower than 5LF-CZ (395 degrees C) and CZ (401 degrees C) at tight contact mode in 1 %O2/N2 atmosphere, indicating that the activation of lattice oxygen at the interface plays an important role in soot oxidation. Furthermore, when further varying the content of LM in xLM-CZ (x = 5 wt%, 10 wt%, 15 wt%, 20 wt%), it was found that 10LM-CZ, whose content of LM reached the monolayer dispersion capacity of CZ, exhibited the most abundant active surface lattice oxygen species due to the optimized interface area. As a result, 10LM-CZ displayed superior activity even than pure LM in both loose and tight contact with/without NO, indicating that the composite catalyst has a wide application environment. This work has a certain guiding significance for the utilization of heterointerface effect among different components to prepare effective soot oxidation catalyst with multi-components.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据