4.6 Article

A highly sensitive flexible humidity sensor based on conductive tape and a carboxymethyl cellulose@graphene composite

期刊

RSC ADVANCES
卷 13, 期 40, 页码 27746-27755

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3ra05232j

关键词

-

向作者/读者索取更多资源

A highly sensitive humidity sensor based on carboxymethyl cellulose@graphene and conductive adhesive tape was developed in this study, showing rapid response and potential applications in various fields.
Flexible humidity sensors have found new applications in diverse fields including human healthcare, the Internet of Things, and so on. In this paper, a highly sensitive humidity sensor based on carboxymethyl cellulose@graphene and conductive adhesive tape was developed. The sensor was constructed on conductive tape which acted as both of the flexible substrate and the electrode to transmit electronic signals. A carboxymethyl cellulose@graphene composite was assembled on the substrate as the sensing layer by a simple spreading method in a 3-D printed groove mold. The sensitive material was characterized for its morphology, composition, crystalline phase, and hydrophilicity by SEM, EDS, XRD, and contact angle measurements. The effect of graphene on the sensitivity was investigated in detail by adjusting the doping concentration. Humidity sensing performance was tested in different relative humidity levels. The rapid responses under different respiratory conditions demonstrated their practical usability in continuous respiration monitoring and recognition of respiratory status. The conductive mechanism of the sensing film was studied by complex impedance spectroscopy under different relative humidity levels. A rational sensing mechanism was proposed integrating ionic conduction, electron conduction and swelling behavior of the carboxymethyl cellulose@graphene composite. A flexible humidity sensor was prepared with carboxymethyl cellulose@graphene as the sensing material and conductive tape as the substrate. The humidity sensing property was determined by the ionic conduction, electron conduction and swelling effect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据