4.2 Article

Screening sunscreens: protecting the biomechanical barrier function of skin from solar ultraviolet radiation damage

期刊

INTERNATIONAL JOURNAL OF COSMETIC SCIENCE
卷 39, 期 3, 页码 269-274

出版社

WILEY
DOI: 10.1111/ics.12370

关键词

claim substantiation in vivo; in vitro; skin barrier; skin physiology; structure; suncare; UV protection

资金

  1. National Science Foundation

向作者/读者索取更多资源

ObjectiveSolar ultraviolet (UV) radiation is ubiquitous in human life and well known to cause skin damage that can lead to harmful conditions such as erythema. Although sunscreen is a popular form of protection for some of these conditions, it is unclear whether sunscreen can maintain the mechanical barrier properties of skin. The objective of this study was to determine whether in vitro thin-film mechanical analysis techniques adapted for biological tissue are able to characterize the efficacy of commonly used UV inhibitors and commercial sunscreens to protect the biomechanical barrier properties of stratum corneum (SC) from UV exposure. MethodsThe biomechanical properties of SC samples were assayed through measurements of the SC's drying stress profile and delamination energy. The drying stresses within SC were characterized from the curvature of a borosilicate glass substrate onto which SC had been adhered. Delamination energies were characterized using a double-cantilever beam (DCB) cohesion testing method. Successive DCB specimens were prepared from previously separated specimens by adhering new substrates onto each side of the already tested specimen to probe delamination energies deeper into the SC. These properties of the SC were measured before and after UV exposure, both with and without sunscreens applied, to determine the role of sunscreen in preserving the barrier function of SC. ResultsThe drying stress in SC starts increasing sooner and rises to a higher plateau stress value after UVA exposure as compared to non-UV-exposed control specimens. For specimens that had sunscreen applied, the UVA-exposed and non-UV-exposed SC had similar drying stress profiles. Additionally, specimens exposed to UVB without protection from sunscreen exhibited significantly lower delamination energies than non-UV-exposed controls. With commercial sunscreen applied, the delamination energy for UV-exposed and non-UV-exposed tissue was consistent, even up to large doses of UVB. ConclusionIn vitro thin-film mechanical analysis techniques can readily characterize the effects of SC's exposure to UV radiation. The methods used in this study demonstrated commercial sunscreens were able to preserve the biomechanical properties of SC during UV exposure, thus indicating the barrier function of SC was also maintained.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据