4.7 Article

Combined use of positive matrix factorization and 13C-15N stable isotopes to trace organic matter-bound potential toxic metals in the urban mangrove sediments

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 904, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2023.166684

关键词

Anthropocene; Trace metals; Positive matrix factorization; Land-Sea coordination; Urbanization

向作者/读者索取更多资源

This study aimed to investigate the sources of organic matter (OM) and associated potential toxic metals (PTMs) in an estuary under urbanization. By combining C-N stable isotope analysis and positive matrix factorization, the researchers found correlations between the sources of total sediment metals and the sources of OM-related metals. The study also revealed significant relationships between OM-associated PTMs and organic matter sources. It further deepened the understanding of the coupling between PTMs and sediment organic matter (SOM).
Coastal sediments act as sinks of sediment organic matter (SOM) and metals because of their special land-sea location and depositional properties. However, there are few reports on the correlation between the sources of organic matter (OM) and associated potential toxic metals (PTMs). In this study, we combined C-N stable isotope analysis and positive matrix factorization to identify the matter and metal sources of OM and glomalin-related soil protein (GRSP) in an estuary under several decades of urbanization. The results of the positive matrix factorization (PMF) reveal a correlation between the sources of total sediment metals and the sources of OM-related metals. The sources of both SOM-bound PTMs and GRSP-bound PTMs are significantly related to the sources of total PTMs. OM sources were elucidated through 13C-15 N stable isotopes, and the potential sources of different types of OM differed. In addition, there is a significant correlation between OM-associated PTMs and organic matter sources. Interestingly, the functional groups of SOM were mainly influenced by multiple PTM sources but no OM source, while the functional groups of GRSP were regulated by a single metal source and OM source. This study deepened the understanding of the coupling between PTMs and SOM. The possibility of combined use of positive matrix factorization and 13C-15 N stable isotope tracing of metals as well as the sources of each metal fractions has been evaluated, which will provide new insights for the transportation of PTMs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据