4.6 Article

A novel model for biofilm initiation in porous media flow

期刊

SOFT MATTER
卷 19, 期 36, 页码 6920-6928

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3sm00575e

关键词

-

向作者/读者索取更多资源

Studying the initial stages of biofilm formation is crucial for understanding the interactions between bacteria, fluid, and geometry. This study presents a new numerical model that takes into account the motion of bacteria and the growth of biofilm, as well as the influence of external flow.
Bacteria often form biofilms in porous environments where an external flow is present, such as soil or filtration systems. To understand the initial stages of biofilm formation, one needs to study the interactions between cells, the fluid and the confining geometries. Here, we present an agent based numerical model for bacteria that takes into account the planktonic stage of motile cells as well as surface attachment and biofilm growth in a lattice Boltzmann fluid. In the planktonic stage we show the importance of the interplay between complex flow and cell motility when determining positions of surface attachment. In the growth stage we show the applicability of our model by investigating how external flow and biofilm stiffness determine qualitative colony morphologies as well as quantitative measurements of, e.g., permeability. A new model enables the simulation of biofilm formation in complex media with external flow from a single cell.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据