4.8 Article

Decoupling the roles of Ni and Co in anionic redox activity of Li-rich NMC cathodes

期刊

NATURE MATERIALS
卷 -, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41563-023-01679

关键词

-

向作者/读者索取更多资源

This study decoupled the effects of nickel and cobalt in lithium-rich NMCs and discovered that cobalt is better than nickel in mediating the kinetics of ligand-to-metal charge transfer. However, the use of cobalt leads to poorer cycling performance and more severe voltage decay. This provides valuable guidelines for future high-capacity cathode design.
Li[LixNiyMnzCo1-x-y-z]O2 (lithium-rich NMCs) are benchmark cathode materials receiving considerable attention due to the abnormally high capacities resulting from their anionic redox chemistry. Although their anionic redox mechanisms have been much investigated, the roles of cationic redox processes remain underexplored, hindering further performance improvement. Here we decoupled the effects of nickel and cobalt in lithium-rich NMCs via a comprehensive study of two typical compounds, Li1.2Ni0.2Mn0.6O2 and Li1.2Co0.4Mn0.4O2. We discovered that both Ni3+/4+ and Co4+, generated during cationic redox processes, are actually intermediate species for triggering oxygen redox through a ligand-to-metal charge-transfer process. However, cobalt is better than nickel in mediating the kinetics of ligand-to-metal charge transfer by favouring more transition metal migration, leading to less cationic redox but more oxygen redox, more O2 release, poorer cycling performance and more severe voltage decay. Our work highlights a compositional optimization pathway for lithium-rich NMCs by deviating from using cobalt to using nickel, providing valuable guidelines for future high-capacity cathode design. Lithium-rich nickel manganese cobalt oxide cathodes are widely explored due to their high capacities related to their anionic redox chemistry. A compositional optimization pathway for these materials investigating the variation of using cobalt and nickel now provides valuable guidelines for future high-capacity cathode design.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据