4.5 Article

Transcriptomic and Hormone Analyses Provide Insight into the Regulation of Axillary Bud Outgrowth of Eucommia ulmoides Oliver

期刊

CURRENT ISSUES IN MOLECULAR BIOLOGY
卷 45, 期 9, 页码 7304-7318

出版社

MDPI
DOI: 10.3390/cimb45090462

关键词

axillary buds; Eucommia ulmoides Oliver; hormone; transcriptome

向作者/读者索取更多资源

In this study, the growth and developmental capacity of Eucommia ulmoides axillary buds were analyzed using transcriptomes and endogenous hormone analysis. The results identified differentially expressed genes related to plant hormone signal transduction and amino acid biosynthesis pathway in the buds. Furthermore, it was found that IAA synthesis and signal transduction play a crucial role in morphological changes during bud germination.
An essential indicator of Eucommia ulmoides Oliver (E. ulmoides) is the axillary bud; the growth and developmental capacity of axillary buds could be used to efficiently determine the structural integrity of branches and plant regeneration. We obtained axillary buds in different positions on the stem, including upper buds (CK), tip buds (T1), and bottom buds (T2), which provided optimal materials for the study of complicated regulatory networks that control bud germination. This study used transcriptomes to analyze the levels of gene expression in three different types of buds, and the results showed that 12,131 differentially expressed genes (DEGs) were discovered via the pairwise comparison of transcriptome data gathered from CK to T2, while the majority of DEGs (44.38%) were mainly found between CK and T1. These DEGs were closely related to plant hormone signal transduction and the amino acid biosynthesis pathway. We also determined changes in endogenous hormone contents during the process of bud germination. Interestingly, except for indole-3-acetic acid (IAA) content, which showed a significant upward trend (p < 0.05) in tip buds on day 4 compared with day 0, the other hormones showed no significant change during the process of germination. Then, the expression patterns of genes involved in IAA biosynthesis and signaling were examined through transcriptome analysis. Furthermore, the expression levels of genes related to IAA biosynthesis and signal transduction were upregulated in tip buds. Particularly, the expression of the IAA degradation gene Gretchen Hagen 3 (GH3.1) was downregulated on day 4, which may support the concept that endogenous IAA promotes bud germination. Based on these data, we propose that IAA synthesis and signal transduction lead to morphological changes in tip buds during the germination process. On this basis, suggestions to improve the efficiency of the production and application of E. ulmoides are put forward to provide guidance for future research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据