4.7 Article

Mass transfer and water management in proton exchange membrane fuel cells with a composite foam-rib flow field

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2023.124595

关键词

Composite foam-rib flow field; Mass transfer; Water management; Proton exchange membrane fuel cell; Fuel cell

向作者/读者索取更多资源

A new flow field structure was studied to improve the performance of fuel cells, which enhances oxygen transport and water removal capabilities for better cell performance.
Mass transfer capability of reactants and hydrothermal management is important for the performance and durability of proton exchange membrane fuel cells. In the conventional rib flow field, the oxygen transport is affected by the accumulation of under-rib liquid water which causes excessive concentration loss and limits cell performance. To improve the cell performance, a composite foam-rib flow field structure is proposed by combining the metal foam flow field and the conventional rib flow field. The proposed design is simulated by using a three-dimensional homogeneous non-isothermal numerical model. The results show that the composite foam-rib flow field, by improving the oxygen transfer and water removal capabilities under the ribs, can improve the oxygen concentration and current density without increasing the pumping power, thus improving the cell performance under different conditions. The key parameters of the composite foam-rib flow field are optimized. With the optimal metal foam filling ratio of 0.75 and porosity of 0.85, the peak power density and the limiting current density for the composite foam-rib flow field are higher than the conventional rib flow field by 5.20% and 22.68%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据