4.8 Article

Stably doped graphene transparent electrode with improved light-extraction for efficient flexible organic light-emitting diodes

期刊

NANO RESEARCH
卷 -, 期 -, 页码 -

出版社

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-023-6176

关键词

graphene; transparent electrode; flexible organic light-emitting diode (OLED); doping; light-extraction

向作者/读者索取更多资源

This study successfully fabricates high-performance graphene FTEs for efficient flexible OLEDs by combining frustrated Lewis pair doping and nanostructure engineering. By depositing a p-type dopant on graphene electrode, both the light-extraction efficiency and charge injection efficiency are improved.
Graphene-based flexible transparent electrodes (FTEs) are promising candidate materials for developing next-generation flexible organic light-emitting diodes (OLEDs). However, the quest for high-efficiency OLEDs is hindered by the low light-extraction and charge injection efficiencies of graphene electrode. Here, we combine the frustrated Lewis pair doping with nanostructure engineering to obtain high-performance graphene FTE. A p-type dopant aci-nitromethane-tris(pentafluorophenyl) borane (ANBCF) was synthesized and deposited on graphene FTE to form an aperiodic nanostructure, which not only improves the light-extraction but also stably p-dopes graphene to enhance its hole injection. The use of ANBCF-doped graphene as the anode enables high-efficiency flexible green OLEDs with external quantum efficiency (EQE) and power efficiency (PE) out-performing most flexible graphene OLEDs of comparable structure. This study provides a simple and effective pathway to fabricate highperformance graphene FTEs for efficient flexible OLEDs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据