4.7 Article

Networked Microgrids for Self-Healing Power Systems

期刊

IEEE TRANSACTIONS ON SMART GRID
卷 7, 期 1, 页码 310-319

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSG.2015.2427513

关键词

Consensus algorithm; distributed power generation; microgrid (MG); power distribution faults; self-healing

资金

  1. U.S. Department of Energy Office of Electricity Delivery and Energy Reliability

向作者/读者索取更多资源

This paper proposes a transformative architecture for the normal operation and self-healing of networked microgrids (MGs). MGs can support and interchange electricity with each other in the proposed infrastructure. The networked MGs are connected by a physical common bus and a designed two-layer cyber communication network. The lower layer is within each MG where the energy management system (EMS) schedules the MG operation; the upper layer links a number of EMSs for global optimization and communication. In the normal operation mode, the objective is to schedule dispatchable distributed generators (DGs), energy storage systems (ESs), and controllable loads to minimize the operation costs and maximize the supply adequacy of each MG. When a generation deficiency or fault happens in an MG, the model switches to the self-healing mode and the local generation capacities of other MGs can be used to support the on-emergency portion of the system. A consensus algorithm is used to distribute portions of the desired power support to each individual MG in a decentralized way. The allocated portion corresponds to each MG's local power exchange target, which is used by its EMS to perform the optimal schedule. The resultant aggregated power output of networked MGs will be used to provide the requested power support. Test cases demonstrate the effectiveness of the proposed methodology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据