4.8 Article

Electrochemically-gated graphene broadband microwave waveguides for ultrasensitive biosensing

期刊

NANOSCALE
卷 15, 期 37, 页码 15304-15317

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3nr01239e

关键词

-

向作者/读者索取更多资源

This paper presents a novel sensor based on graphene coplanar waveguides and microfluidic channels for the identification of non-amplified DNA sequences and single-base mutations. The sensor demonstrates high sensitivity and the ability to generate multidimensional datasets for advanced data analysis, achieving accurate discrimination between different DNA sequences even in the presence of noise and low signal-to-noise ratios.
Identification of non-amplified DNA sequences and single-base mutations is essential for molecular biology and genetic diagnostics. This paper reports a novel sensor consisting of electrochemically-gated graphene coplanar waveguides coupled with a microfluidic channel. Upon exposure to analytes, propagation of electromagnetic waves in the waveguides is modified as a result of interactions with the fringing field and modulation of graphene dynamic conductivity resulting from electrostatic gating. Probe DNA sequences are immobilised on the graphene surface, and the sensor is exposed to DNA sequences which either perfectly match the probe, contain a single-base mismatch or are unrelated. By monitoring the scattering parameters at frequencies between 50 MHz and 50 GHz, unambiguous and reproducible discrimination of the different strands is achieved at concentrations as low as one attomole per litre (1 aM). By controlling and synchronising frequency sweeps, electrochemical gating, and liquid flow in the microfluidic channel, the sensor generates multidimensional datasets. Advanced data analysis techniques are utilised to take full advantage of the richness of the dataset. A classification accuracy >97% between all three sequences is achieved using different Machine Learning models, even in the presence of simulated noise and low signal-to-noise ratios. The sensor exceeds state-of-the-art sensitivity of field-effect transistors and microwave sensors for the identification of single-base mismatches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据