4.8 Article

High and fast: NMR protein-proton side-chain assignments at 160 kHz and 1.2 GHz

期刊

CHEMICAL SCIENCE
卷 14, 期 39, 页码 10824-10834

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3sc03539e

关键词

-

向作者/读者索取更多资源

Magic-angle-spinning (MAS) frequencies and high magnetic field significantly improve the spectral resolution of side-chain protons in proteins, enabling better study of protein structure and interactions.
The NMR spectra of side-chain protons in proteins provide important information, not only about their structure and dynamics, but also about the mechanisms that regulate interactions between macromolecules. However, in the solid-state, these resonances are particularly difficult to resolve, even in relatively small proteins. We show that magic-angle-spinning (MAS) frequencies of 160 kHz, combined with a high magnetic field of 1200 MHz proton Larmor frequency, significantly improve their spectral resolution. We investigate in detail the gain for MAS frequencies between 110 and 160 kHz MAS for a model sample as well as for the hepatitis B viral capsid assembled from 120 core-protein (Cp) dimers. For both systems, we found a significantly improved spectral resolution of the side-chain region in the 1H-13C 2D spectra. The combination of 160 kHz MAS frequency with a magnetic field of 1200 MHz, allowed us to assign 61% of the aliphatic protons of Cp. The side-chain proton assignment opens up new possibilities for structural studies and further characterization of protein-protein or protein-nucleic acid interactions. The combination of the fastest MAS and highest magnetic field allows to spectrally resolve the side-chain protons of proteins. It makes 1H-detected MAS NMR a key player in the study of protein interactions with other macromolecules or nucleic acids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据