4.8 Article

Magnetic Field Synthesis of Electromagnetic Navigation Systems in Current Limits

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIE.2023.3306399

关键词

Conduction loss; electromagnetic navigation systems (eMNS); magnetic field synthesis; magnetic guidewire; magnetic-feasible workspace; microrobot

向作者/读者索取更多资源

This study proposes an iterative control method that achieves both a wide magnetic-feasible workspace and low conduction loss.
Electromagnetic navigation systems (eMNS) for medical applications, such as cardiovascular diseases, employ stationary coils and soft magnetic cores. Electrical currents in the coils synthesize magnetic fields to wirelessly control millimeter-sized microrobots, such as magnetic guidewires. Previous control methods of calculating the current references for the eMNS focus on either low conduction loss with pseudoinverse or wide magnetic-feasible workspace (MFW) with a linear combination of pseudoinverse and minimum infinity-norm. However, with the merits of both wide MFW and low conduction loss, this article proposes an iterative control method that modifies the initial pseudoinverse iteratively, while ensuring that the current limits of the coils are not exceeded. A detailed description of the control method, accompanied by a comprehensive analysis, is provided. The prototype of eMNS with eight coils is used for the experimental verification. It is shown that, in the current limits, MFW is increased by more than 45% compared with the pseudoinverse method, and the conduction loss is reduced by more than 2 kW compared with the linear combination method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据