4.7 Article

Effect of mixed physical barrier on seawater intrusion and nitrate accumulation in coastal unconfined aquifers

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-023-29637-9

关键词

Seawater intrusion; Mixed physical barrier; Cutoff wall; Subsurface dam; Nitrate pollution; Residual saltwater removal

向作者/读者索取更多资源

Physical barriers, such as the mixed physical barrier (MPB), have been proven effective in preventing and controlling seawater intrusion (SWI) in coastal areas. However, the construction of MPB may lead to nitrate accumulation in coastal aquifers. This study investigated the SWI control capacity and nitrate accumulation in MPB and compared it with conventional subsurface dam and cutoff wall. The results showed that MPB is more efficient in preventing and controlling SWI, but it also leads to higher nitrate accumulation.
Physical barrier has been proven to be one of the most effective measures to prevent and control seawater intrusion (SWI) in coastal areas. Mixed physical barrier (MPB), a new type of physical barrier, has been shown to have higher efficiency in SWI control. As with conventional subsurface dam and cutoff wall, the construction of MPB may lead to the accumulation of nitrate contaminants in coastal aquifers. We investigated the SWI control capacity and nitrate accumulation in the MPB using a numerical model of variable density flow coupling with reactive transport, and performed sensitivity analysis on the subsurface dam height, cutoff wall depth and opening spacing in the MPB. The differences in SWI control and nitrate accumulation between MPB and conventional subsurface dam and cutoff wall were compared to assess the applicability of different physical barrier. The numerical results show that the construction of MPB will increase the nitrate concentration and contaminated area in the aquifer. The prevention and control efficiency of MPB against SWI is positively correlated with the depth of the cutoff wall, reaching the highest efficiency at the minimum effective dam height, and the retreat distance of the saltwater wedge is positively correlated with the opening spacing. We found a non-monotonic relationship between the change in subsurface dam height and the extent of nitrate accumulation, with total nitrate mass and contaminated area increasing and then decreasing as the height of the subsurface dam increased. The degree of nitrate accumulation increased linearly with increasing the height of the cutoff wall and the opening spacing. Under certain conditions, MPB is 46-53% and 16-57% more efficient in preventing and controlling SWI than conventional subsurface dam and cutoff wall, respectively. However, MPB caused 14-27% and 2-12% more nitrate accumulation than subsurface dam and cutoff wall, respectively. The findings of this study are of great value for the protection of coastal groundwater resources and will help decision makers to select appropriate engineering measures and designs to reduce the accumulation of nitrate pollutants while improving the efficiency of SWI control.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据