4.7 Article

A magnetically controlled microfluidic device for concentration dependent in vitro testing of anticancer drug

期刊

LAB ON A CHIP
卷 23, 期 19, 页码 4352-4365

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3lc00495c

关键词

-

向作者/读者索取更多资源

This study developed a versatile magnetic microfluidic device for concentration-dependent compartmentalization of a magnetically controlled anticancer drug. By optimizing the microfluidic design and magnet configuration, predictable concentration control and gradient generation were achieved. The results of drug screening and cytotoxicity testing using the device were consistent with traditional methods.
Compartmentalizing magnetically controlled drug molecules is critical in several bioanalytical trials and tests, such as drug screening, digital PCR, magnetic hyperthermia, and controlled magnetic drug targeting (MDT). However, several studies have focused on diluting the nonmagnetic drug using various passive devices based on traditional microfabrication and 3D printing techniques, leading to the requirement of sterilized cleanroom facilities and expensive equipment, respectively. This work develops a strategically designed and straightforward lithography-free process to fabricate a magnetic microfluidic device using a multilayered PMMA substrate for concentration-dependent compartmentalization of a magnetically controlled anticancer drug. The device contains an array of outlet chamber wells connected to five primary separation microfluidic channels for collecting different drug concentrations. The microfluidic design geometry, magnet configuration, and fluid flow rate are optimized using FEM (Finite Element Method) simulations to attain a systematic concentration gradient region within the microfluidic channel. A stairstep-like patterned magnet creates an attenuating magnetic force between 0.01-0.24 pN on magnetic nanoparticles, capable of generating the concentration gradient for the clinically acceptable flow range of Q = 0.6-1.1 mu L min(- 1). The chamber well of the device is designed to adapt different cell cultures and simultaneously expose five different concentrations by introducing a predefined concentration from the inlet. As a result, this innovative design provides a predictable concentration control in each well through a single injection port to minimize drug loading errors. The concentration gradient generation of the drug and exposure to cell culture chambers are controlled using the magnetic and drag forces capable of running a time-varying dose screening experiment. The concentration range of the compartmentalized drug sample in the device is determined as 10-480 mu g mL(-1) using inductively coupled plasma mass spectrometry (ICPMS) measurement and fluorescence intensity. The cytotoxicity test of MCF7 and NIH3T3 cells using the device was consistent with the results obtained with the manual dilution method, resulting in the reusability of the device.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据