4.7 Article

Co-loading of Temozolomide with Oleuropein or rutin into polylactic acid core-shell nanofiber webs inhibit glioblastoma cell by controlled release

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2023.126722

关键词

Combined treatment; Glioblastoma local treatment; Nano-based drug delivery systems

向作者/读者索取更多资源

Glioblastoma is prone to recur after surgical treatment, requiring local therapeutic strategies. This study developed a nanofiber-based therapy using Oleuropein, rutin, and Temozolomide against recurrent GB cells. The results demonstrated that the nanofiber webs effectively controlled the release of Oleuropein and Temozolomide, suppressing the growth and migration of GB cells.
Glioblastoma (GB) has susceptibility to post-surgical recurrence. Therefore, local treatment methods are required against recurrent GB cells in the post-surgical area. In this study, we developed a nanofiber-based local therapy against GB cells using Oleuropein (OL), and rutin and their combinations with Temozolomide (TMZ). The polylactic acid (PLA) coreshell nanofiber webs were encapsulated with OL (PLA(OL)), rutin (PLA(rutin)), and TMZ (PLA(TMZ)) by an electrospinning process. A SEM visualized the morphology and the total immersion method determined the release characteristics of PLA webs. Real-time cell tracking analysis for cell growth, dual Acridine Orange/Propidium Iodide staining for cell viability, a scratch wound healing assay for migration capacity, and a sphere formation assay for tumor spheroid aggressiveness were used. All polymeric nanofiber webs had core -shell structures with an average diameter between 133 +/- 30.7-139 +/- 20.5 nm. All PLA webs promoted apoptotic cell death, suppressed cell migration, and spheres growth (p < 0.0001). PLA(OL) and PLA(TMZ) suppressed GB cell viability with a controlled release that increased over 120 h, while PLA(rutin) caused rapid cell inhibition (p < 0.0001). Collectively, our findings suggest that core-shell nanowebs could be a novel and effective therapeutic tool for the controlled release of OL and TMZ against recurrent GB cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据