4.4 Article

High methane emissions as trade-off for phosphorus removal in surface flow treatment wetlands

期刊

AQUATIC BOTANY
卷 190, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.aquabot.2023.103719

关键词

Agricultural runoff; Carbon sequestration; Vegetation development; Non-point pollution; Sediment accumulation

向作者/读者索取更多资源

Constructed wetlands treating runoff from agricultural catchments can reduce nutrient load of water, but they can also be significant sources of greenhouse gases, especially methane. This study assessed methane emission potentials and phosphorus removal efficiency in a 0.45 ha in-stream surface flow constructed wetland, and analyzed the temporal dynamics of methane emissions and phosphorus removal over a nearly 4-year period. The results showed a clear seasonal dynamic in phosphorus removal efficiency and an increasing trend in methane emissions over the years, with the majority of methane fluxes occurring during the warm period. Maintenance of the wetland and regular removal of aboveground vegetation can reduce methane emissions, and regular sediment removal is also necessary due to phosphorus saturation.
Constructed wetlands (CW) treating runoff from agricultural catchments reduce the nutrient load of water, however, they can also be significant sources of greenhouse gases, especially methane (CH4). We simultaneously assessed CH4 emission potentials and phosphorus (P) removal efficiency in a 0.45 ha in-stream surface flow CW to determine the main drivers of CH4 emissions, and to analyze the temporal dynamics of CH4 emissions and P removal during an almost 4-year period. The TP (total phosphorus) removal efficiency had a clear seasonal dynamic, with the highest removal occurring during summer and early autumn (monthly average 60.5%), when the flow rate was lowest and water residence time longest. Due to increasing sedimentation and related anaerobic conditions, the mean hourly CH4 emissions for each year demonstrated an increasing trend over the years: from 88 mu g CH4-C m- 2 h-1 in 2018-2505 mu g CH4-C m- 2 h-1 in 2021. There was a clear seasonality in CH4 emissions: up to 90% of CH4 fluxes occurred during the warm period (from May to October). We assume that maintenance of treatment wetlands is essential and predominantly regular removal of aboveground vegetation at the second half of the growing season would decrease CH4 emissions. Nevertheless, due to the P saturation in sediments, regular sediment removal in the long term is also necessary.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据