4.7 Article

Chondrocyte-laden gelatin/sodium alginate hydrogel integrating 3D printed PU scaffold for auricular cartilage reconstruction

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2023.126294

关键词

3D printing; PU scaffold; Auricular cartilage

向作者/读者索取更多资源

The study found that PU material treated with ultrasonication and high temperature showed good similarity in simulating the mechanical properties of auricular cartilage. The PU scaffold filled with chondrocytes successfully integrated with normal auricular cartilage, indicating its potential for clinical repair of ear cartilage damage.
Clinically, modified autologous rib cartilage grafts and commercial implants are commonly used for intraoperative repair of auricular cartilage defects caused by injuries. However, scaffold implantation is often accompanied by various complications including absorption and collapse, resulting in undesirable clinical outcomes. Three-dimensional printed auricular cartilage scaffolds have the advantage of individual design and biofunctionality, which attracted tremendous attention in this field. In this study, to better simulate the mechanical properties of auricular cartilage, we tested PU treated by ultrasonication and high temperature for 30 min (PU-30) or 60 min (PU-60). The results indicated that the compression modulus of PU-30 was 2.21-2.48 MPa, which similar to that of natural auricular cartilage (2.22-7.23 MPa) and was chosen for subsequent experiments. And the pores of treated PU were filled with a gelatin/sodium alginate hydrogel loaded with chondrocytes. In vivo analysis using a rabbit model confirmed that implanted PU-30 scaffold filled with chondrocytes contained hydrogel successfully integrated with normal auricular cartilage, and that new cartilage was generated at the scaffold-tissue interface by histological examination. These findings illustrate that this engineered scaffold represents a potential strategy for repair of ear cartilage damage in clinical.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据