4.6 Article

Synthesis of new class of indole acetic acid sulfonate derivatives as ectonucleotidases inhibitors

期刊

RSC ADVANCES
卷 13, 期 42, 页码 29496-29511

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3ra04266a

关键词

-

向作者/读者索取更多资源

This article investigates the potential of substituted indole acetic acid sulfonate derivatives as ectonucleotidase inhibitors, showing that these compounds can inhibit tumor development and immune evasion, and have selectivity and potency.
Ectonucleotidases inhibitors (ENPPs, e5 ' NT (CD73) and h-TNAP) are potential therapeutic candidates for the treatment of cancer. Adenosine, the cancer-developing, and growth moiety is the resultant product of these enzymes. The synthesis of small molecules that can increase the acidic and ionizable structure of adenosine 5-monophosphate (AMP) has been used in traditional attempts to inhibit ENPPs, ecto-5 '-nucleotidase and h-TNAP. In this article, we present a short and interesting method for developing substituted indole acetic acid sulfonate derivatives (5a-5o), which are non-nucleotide based small molecules, and investigated their inhibitory potential against recombinant h-ENPP1, h-ENPP3, h-TNAP, h-e5 ' NT and r-e5 ' NT. Their overexpression in the tumor environment leads to high adenosine level that results in tumor development as well as immune evasion. Therefore, selective, and potent inhibitors of these enzymes would be expected to decrease adenosine levels and manage tumor development and progression. Our intended outcome led to the discovery of new potent inhibitors like' 5e (IC50 against h-ENPP1 = 0.32 +/- 0.01 mu M, 58 folds increased with respect to suramin), 5j (IC50 against h-ENPP3 = 0.62 +/- 0.003 mu M, 21 folds increase with respect to suramin), 5c (IC50 against h-e5 ' NT = 0.37 +/- 0.03 mu M, 115 folds increase with respect to sulfamic acid), 5i (IC50 against r-e5 ' NT = 0.81 +/- 0.05 mu M, 95 folds increase with respect to sulfamic acid), and 5g (IC50 against h-TNAP = 0.59 +/- 0.08 mu M, 36 folds increase with respect to Levamisole). Molecular docking studies revealed that inhibitors of these selected target enzymes induced favorable interactions with the key amino acids of the active site, including Lys255, Lys278, Asn277, Gly533, Lys528, Tyr451, Phe257, Tyr340, Gln465, Gln434, Lys437, Glu830, Cys818, Asn499, Arg40, Phe417, Phe500, Asn503, Asn599, Tyr281, Arg397, Asp526, Phe419 and Tyr502. Enzyme kinetic studies revealed that potent compounds such as 5j and 5e blocked these ectonucleotidases competitively while compounds 5e and 5c presented an un-competitive binding mode. 5g revealed a non-competitive mode of inhibition. Indole acetic acid sulfonate derivatives as ectonucleotidases inhibitors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据