3.8 Article

Model of inverse bleb growth explains giant vacuole dynamics during cell mechanoadaptation

期刊

PNAS NEXUS
卷 2, 期 2, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/pnasnexus/pgac304

关键词

shape mechanoadaptation; coarse-grained modeling; inverse blebbing; Ostwald ripening

向作者/读者索取更多资源

Cells can adapt to hostile environmental conditions by dynamically changing their shape. Scientists propose that the formation of giant vacuoles can be described as inverse blebbing and model this process to explain it.
Cells can withstand hostile environmental conditions manifest as large mechanical forces such as pressure gradients and/or shear stresses by dynamically changing their shape. Such conditions are realized in the Schlemm's canal of the eye where endothelial cells that cover the inner vessel wall are subjected to the hydrodynamic pressure gradients exerted by the aqueous humor outflow. These cells form fluid-filled dynamic outpouchings of their basal membrane called giant vacuoles. The inverses of giant vacuoles are reminiscent of cellular blebs, extracellular cytoplasmic protrusions triggered by local temporary disruption of the contractile actomyosin cortex. Inverse blebbing has also been first observed experimentally during sprouting angiogenesis, but its underlying physical mechanisms are poorly understood. Here, we hypothesize that giant vacuole formation can be described as inverse blebbing and formulate a biophysical model of this process. Our model elucidates how cell membrane mechanical properties affect the morphology and dynamics of giant vacuoles and predicts coarsening akin to Ostwald ripening between multiple invaginating vacuoles. Our results are in qualitative agreement with observations from the formation of giant vacuoles during perfusion experiments. Our model not only elucidates the biophysical mechanisms driving inverse blebbing and giant vacuole dynamics, but also identifies universal features of the cellular response to pressure loads that are relevant to many experimental contexts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据