4.7 Article

Varying Response of the Concentration and Yield of Soybean Seed Mineral Elements, Carbohydrates, Organic Acids, Amino Acids, Protein, and Oil to Phosphorus Starvation and CO2 Enrichment

期刊

FRONTIERS IN PLANT SCIENCE
卷 7, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2016.01967

关键词

contents; glycerate; myo-inositol; pinitol; phytic acid; proline; putrescine

向作者/读者索取更多资源

A detailed investigation of the concentration (e.g., mg g(-1) seed) and total yield (e.g., g plant(-1)) of seed mineral elements and metabolic profile under phosphorus (P) starvation at ambient (aCO(2)) and elevated carbon dioxide (eCO(2)) in soybean is limited. Soybean plants were grown in a controlled environment at either sufficient (0.50 mM P, control) or deficient (0.10 and 0.01 mM, P-stress) levels of P under aCO(2) and eCO(2) (400 and 800 mu mol mol(-1), respectively). Both the concentration and yield of 36 out of 38 seed components responded to P treatment and on average 25 and 11 components increased and decreased, respectively, in response to P starvation. Concentrations of carbohydrates (e.g., glucose, sugar alcohols), organic acids (e.g., succinate, glycerate) and amino acids increased while oil, and several minerals declined under P deficiency. However, the yield of the majority of seed components declined except several amino acids (e.g., phenylalanine, serine) under P deficiency. The concentration-based relationship between seed protein and oil was negative (r(2) = 0.96), whereas yield-based relationship was positive (r(2) = 0.99) across treatments. The CO2 treatment also altered the concentration of 28 out of 38 seed components, of which 23 showed decreasing (e.g., sucrose, glucose, citrate, aconitate, several minerals, and amino acids) while C, iron, Mn, glycerate, and oil showed increasing trends at eCO(2). Despite a decreased concentration, yields of the majority of seed components were increased in response to eCO(2), which was attributable to the increased seed production especially near sufficient P nutrition. The P x CO2 interactions for the concentration of amino acids and the yield of several components were due to the lack of their response to eCO(2) under control or the severe P starvation, respectively. Thus, P deficiency primarily reduced the concentration of oil and mineral elements but enhanced a majority of other components. However, seed components yield consistently declined under P starvation except for several amino acids. The study highlighted a P nutritional-status dependent response of soybean seed components to eCO(2) suggesting the requirement of an adequate P supply to obtain the beneficial effects of eGO(2) on the overall yield of various seed components.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据